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ABSTRACT: This paper studies the GI/G/I queueing system in which
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a model for the dam with finite capacity, instantaneous water

supply and constant release rule. Using analytical method

together with the property that the queueing process 'starts anew'

probabilistically whenever an arriving customer initiates a

busy period, w.-obtain various transient and stationary results

for the system/J3 P-'
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1. Introducticn.

in the sinzie-server queueing model with uniform>c e
Ior, bounded

virtual waiting times studied here,the server never permits the

amount of work still to be handled by him at any moment to exceed

a constant D. This means that the total time spent by each

customer in the system is limited by D. If this time exceeds D,

then the customer has to cut short his assigned service time.

This model is also the model for the dam with finite capacity,

instantaneous water supply and constant release rule. The content

of the dam is equivalent to the virtual waiting time of the queueing

system. If at some input moment, the supply is so large that the

content exceeds the capacity, then overflow occurs.

The E./D/l model has been investigated by Ghosal [9] and

Prabhu [15]; the M/G/l model by Kovalenko [11], Takacs [23] and

Cohen [5]. Cohen [4] also obtained several results for the model

in which the inter-arrival times and service times have rational

Laplace-Stieljes transforms. Daley [7,S] studied the distribution

of the stationary waiting time of the GI/G/l model. (See also [1]

and [2]). In this paper, we shall obtain a fairly complete

solution for the GI/G/l model. Explicit results will be obtained

for the M/G/l model.

The key to our analysis of the system is that many of its

processes are regenerative; that is, they restart probabilistically

whenever a customer initiates a busy period. Regenerative processes

in this sense were introduced by Smith [17,18] and have been used

iA
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hv many authors to study; :he stationary behavizur o' ma n.

queueing systems. ( See, for example, [3, , r5i , , 2

[16] and [19]). By using the regenerative procerties aon o : -4

analytical methods in this paper, we shall show that not only

the stationary behaviour of the system can be studied but its

transient characteristics can also be obtained. These methods

also give us insight into the probabilistic structure of the

system. In Section 3, the mathematical description of the

transient behaviour of the system is obtained from its behaviour

within a busy cycle. In Section 4, the mathematical description

of its stationary behaviour is also obtained from its behaviour

within a busy cycle. The behaviour of the system within a busy

cycle and the stochastic laws for the busy cycle are then

studied in Section 5. In Section 6, due to the special structure

of the M/G/l queue, we shall obtain explicit results for the

behaviour within a busy cycle and the stochastic laws for the

busy cycle of this system.

- • | | -
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2. The formal model and notation.

We are given

(D.1) a real, positive number D, D <

(D.2) an integer-valued, non-negative random variable 0 , EI{' 0
}<;

(D.3) a real, non-negative random variable wo0 P'w0
< DI = 1;

(D.4) Two independent sequences of independent and identically
distributed, real, positive random variables {tklk) i} and

{Sk' k> 1. We assume that each of s and t has a finite first

moment.

To is the number of customers in the system at time t=0-

and w0 is the virtual waiting time at time t=O-. Let customers

(m0 +l), (m0+2), ... , k .... arrive at the time epochs T + it

Tm0+ 2' . , ' ... where 0 = Tm0+ 1  < Tm0+ 2  <...< rk < ...

Let rk+1 - Tk = tk ' for all k>n0.

Let the assigned service time of the kth customer be k

We assume that no customer can stay in the system longer than the

time interval of length D. If the total actual waiting time and

service time of a customer exceeds D, then he shall cut short his

assigned service time.

We write

(D.5) Y(z) = E{exp(-zs1 )} for Re(z) > 0-

(D.6) Q(z) = E{exp(-zt 1 )} for Re(z) > 0.

The customers are served in order of their arrivals and there is no

limit on the size of the waiting room.



-4-

Besides k we want to study the followina random variables:
kth

(D.7) w. = the actual waitin- time of the k customer (k>im 0

(D.8) w = limit in distribution of wk when k--, if this exists;

(D.9) Zk = the lost service time of the kth customer (k>m 0),

i.e. k = max ( + SkD) - D

(D.10) _ = limit in distribution of k when k--, if this exists;
Lk

(D.I) 1 = the duration of the initial busy period;
th

(D.12) = the duration of the v busy period, v. 2;

(D.13) ii = the duration of the first idle period;

(D.14) iv = the duration of the vth idle period, v> 2;

(D.15) c L + il = the duration of the initial busy cycle;
(D.16) c = M2v + i = the duration of the vth busy cycle, v> 2;

(D.17) nI = the number of customers served during the initial busy

period, including the m 0 customers in the system at

time t=0-;

(D.18) nv = the number of customers served during the v th busy period,

v>. 2;

(D.19) v(t) = the virtual waiting time at time t, t> 0;

(D.20) v(-) = limit in distribution of v(t) when t--, if this exists;

(D.21) U(t) = the total number of customers arriving during the time

interval [0,t] , including the m 0 customers in the

system at time t=O-;

(D.22) a(t) = the time difference between t and the time of the first

arrival during the interval (t,-).

The results will be expressed in the following forms:

_ - -



(D. 23) W Mw(X,j Z) k ~km+lx E-.exp(7 X~k z k ) i 0 =m,w0)=w3

(D. 24) L m, W(X, ",Z) k =m+lx E~exp(--tk z.k) Jj0 =m,wOw

for O<IxI<l, Re( ),>O, Re(z)>,O, M>,O, W>.O;

(D.25) V t x -v()-a()M~(X?.:tzs J p(t) E x - m,jy,:w)dt

for O<?xl<l, Re( ),>O, lzKlz,Re(s),O, m,.O, w,>.O;

(D.26) C M (x, ,-z) = E{x nexp(-c 1 +zi 1 )1flf,w 0 ~W}

for O<,IxI,<l, Re(C)>,O, Re(z),<O, m~.O, w>,O;

(D.27) W,,(z) = Eiexp(-z ,)I for IzI<-

(D.28) L.(z) = Eiexp(-zk.)} for Re(z)>O

,D.29) V0,(z) = E{exp(-zv(-)l for II~

We shall need the following intermediate Laplace-Stieljes

transforms:

(D.30) W m,W(X = Et k=m+l xep-Lk-k-jO--~Ojw

for O<1x14<, Re(E).O, lz<, m>O w,>O;

(D.31) Lw (x4E,z) =E{~±+ LkxpC k) I nom,w =w}

for O<Ixi41l, Re( )>.O, Re(z).O0, m.O0, w.O0

(D.32) VMw~x,,zPs E f~ ra .()ep-tz~t-at)tl~~o

for O<IxIP<, Re( )>,O, IzI<o, Re(s)>,, 0, m> 0O, w,>,;

(D.33) P M,W (x, ,S) E E x !'exp(-E2.i-si 1) Irn-m,~w}

for O<IxlI<l, Re( )>,O Rs),O, m~D, w>,O.
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It is important to point out here that there are two types

of busy periods which Cohen L 4,p.284] zalls strong and weak busy

periods. While two consecutive strong busy periods are separated

with probability one by an idle period of non-zero duration; a weak

busy period may be followed by an idle period of zero duration.
th

In other words, if the (k+l) customer arrives at the instant

the kth customer departs, the strong busy period continues while

the weak busy period terminates and a new weak busy period starts.

We consider both types of busy periods in this paper. If the

result is applicable for both, no notational distinctions are

made. If a result is applicable to the strong busy period only,

then a superscript "s" is added to the notation. If a result is

applicable to the weak busy period only, then the superscript "w"

is added.

Remarks:

(R.1) From (D.20) and (D.31), we have

(2.1) E{fl1 mo=m,O=w} W (l'OO)+m ,w(l,O,O)+m

(2.2) E{n2 = W0 ,0 (l,O,0) L0 ,0 (1,O,O)

I- &



3. Regenerative results for the transient behaviour.

In this section, we shall show that the study of the actual

waiting time of each customer, the lost service time of each

customer and the virtual waiting time at each epoch can be

reduced to the study of the lost servive times within one busy

cycle alone; that is, for 0<Ixl<l, Re(,)- Re(s)->0, m->0, w-0,

W (x, ,z) (Iz!<w),L (x, ,z) (Ae(z)-,O) and V , (x, ,z,s) (Cz'<-)

can be obtained from Lm'w (x,,z) (Re(z, .>0) and C m,w(X,,0).

The arguments are based mainly on the regenerative property

that the continuations of many processes in this system beyond

the end of a busy cycle are the probabilistic replicas of these

processes commencing at the beginning of that busy cycle.

THEOREM 1 For 0<Ixl<l, Re( ).>0, IzI<- , m>0, w>0,

(3.1) W0 , 0 (xEz) = W0 ,0(x,&,z) / [I-C0 , 0 (xE,0) ;

(3.2) W (X, ,z) = W (X,E,z) + C (X,,0)W (x, ,z)
m'w m ,w m,W O 00

PROOF: We have , from (D.23) and (D.30), for m>0, w>0,

(3.3) W (x,E,z) = W (x ' r ' z)
m'w m ,w

+ l+k -0

Now since the queueing process starts again probabilistically

when the (nl+l)th customer initiates the second busy period at

time T+l = c I ,c and n I are independent of wnl+k for all

k>-l. Also, for all k>.l, wn1+k are independent of 4 and !.

Thus we can write

.1"



(3.4) W M (x, z) 'n .' (x, z)
m,w mt,w

+C Cw(X,7,0)-lxexp( k-ZWl+k-0 = 0 ' w-0 = 0

Furthermore, if a0=0 and wO=0,then w l+k will have the

same distribution as wk. Thus (3.2) is proved. As (3.2)

is also applicable when rn=0, w =0, (3.1) follows.-

THEOREM 2: For 0<ix<l, Re(:)>O, Re(z)>0, m>O, w>0,

(3.5) L0 ,0 (x' 'z) = L / _-C0 0(M, ,0J

(3.6) Lm'w(x,,z) = Lm'w(x, ',z) + Cm'w(X, ,0)L 0 (x,rz)

PROOF: The proof is omitted becauEe it is analogous to that of

Theorem l.-

iheorems 1 and 2 relate W (x, ,z) and L (x,7,z) to
m,w m,w

W (x,:,z), L (x,E,z) and C (x,E,O). We shall now showm,w Mw m,w

that Vm w(XE,z,s) can be obtained from Wm'w (x,,z) and

L (x,E,z). This is an important relation which is of interest

by itself because it enables us to find the mathematical description

of the behaviour of a queue in continuous time if we know its

behaviour at a certain set of discrete-time epochs.

LEMMA 1: For 0<Ixl<l, Re( )>0, z(<- , m>0, w>0,

(3.7) V0 ,0 (x' 'z s) = V0 '0 (x,',Ezs) / I-C 0 (x,' ,0

(3.8) V mw(X,,z,s) = Vm w(X,.,z,s)

+ Cm,w (X,,0) V0 ,0 (x,, z,s)

PROOF: The proof of this lemma is omitted because it is analogous



t C t- at < ThtCor :T 11. 2-1e, We. US- r~ tA

ti-ern:c all t~Q ),, x t-. i:

samine d is r i btic:~ ss: .

!,T MA 2: For 0O xlz-1, Re(s ()> b ~ O

(3.9) (Z+s- r ,)V (x,z S)

-x -ex(-zw) - zx exp((S2',w)/(s-K)

+ zlXYi,(Z~) (S)Jm,! X )/

+
(XXrD /) -I,

zexp((s--D)I(S)rwXWS mw (x

+ (z+S-EflC , (X, ,0),/1(S-)

PROOF: For U< x~l Re(~~O Re(S) ;'., z!< , .m< (n 1 ), w"O,

(3.10) V X1 (, ,z rS)=

EJI,=, exp( -tZ(Z +min(w +s ,D)-t)+1 E-t

+~)t-( E\-t.~ - ~Q'))dt =rn, =W}

+E X I iexp(-&t-s(T ~ -t))tTm" o=

As Wk+l = Lk + min(!tk+s k D) - T k+l for k<n Iand

T + min(w +s D) , (3.10) becomes



(3.11) v M,(x,Zfs)

Z+5-7, x-~n- Xexp(-rk~l-zwkl)

-exp(-:E-t -z(min(w +s ,D))-s

+k -1t k )I 7e p- 0(- )i m ,w C=w ~
~+s

-exp(- r 7n.zkmifn(w n+s a,D) )-st _ 711m =m w =w
1-n,

-1 -n- _W - -* ~ 1~ E{ s; exp(-:c ) exp(-:-p -s(cjf )] HO Ilw~

Now observe that for k~ni, mxw D- n ec
-'-k. -a~ktskD~ n ec

(3.12) exp(-:Tk-z(min~w +s ,D) )-stk

ex("kz~ s)s + exp(- Tk -zD-stk

-exp(-r-k-z(max(w~ + )-s

-k -Dsk)

exp(-zs k)exp(-st k)exp(-rLkzwk)

-exp (- zD) exp (- stk) Lexp (- .k- z.k) -exp(~t7

Thus (3.11) can now be written as

(3.13) v XEp) -m exp(-zw)/(z+a-l )

+ i-x f*X'(z) (s)1 MW(Xi iZ) /X(Z+S- )

" exp(-zD)Q(s) L~M,W(x,E,z) L M£ (xi~,O§/ (z+s- )

" P ,(X, ,S) /(z+S-)

+LM,W(XIEO) - MW(x, ,S)J (S



It is easy, to nrove that .iS also a~rolizao,.

when n, = -r,-!. Now since V ,? (x,,ZsS)an

C M, (x,Z, 0) are analytic r 0< x 4,Re) Re (s) , z,<-,

letting z=j,-s in (3.13) yiJelds

(3.14) P 2 (x,71,s) x xrnexp((s--K)W)

mnw

- exo((s:* D) (s)L:(x,.: ns) (xv:,O)

If -de substitute this ecuation back into (3.13) , we obtain (3.9

THEOREM 3: For O<'xf<1, Re(r)?,Re~s),O, Iz, m,>O, w,>O,

(3.15) (z+s-Z)V x,.X,7z,s) -x mexp)(-Zw) -zx exp ( (s ,) w)/(s-:,

+ Ll-xY (Z) 2(S) W w W(X,",,Z)/x

+ 1- XT( Sy(S) (W m, w ( x s/x s -)

+ expo(-zD)!2(s) (,,)-Ln X 7

±L~ M, (x~ l(s-:,)

PROOF: The proof is straightforward from Theorems 1,2 and

Lemmas 1,2.:

It remains to show that W (x,.r,z) can be obtained from

L M (x,i,,z) and C M (x,Z,-z).

THEOREM 4: For 0< X!,1, Re(j,).>Re(z)>,O,m>.O, w,>,O,

x+1exp(-zw) - xC M (X, ,-Z)

- exp(-zD)C2(;,-Z)'-L (x, *,z)-L (X,OV-

- - ~ - - - -- ---- -- -- -



PROOF: Since V Cx,: ,zs) , (x,:-,O and p x, ,s
m,w " n~w

are analytic for 0 -x %l, Re)0Re z)-e, m.O, w>0, 3. 60

is obtained by putting s = -z in i3.13)

Remarks:

(R.2) (3.1) and (3.7) are the generalizations of (3.3 and

(4.6) in [5,pps. 6,131 respectively.

,R.3) When D-- , then Theorem 3 becomes Theorem 2 in 121].

While Takacs derived the 'latter directly, the former is obtained

via Lemma 2, which will also be useful in the derivation of

Theorem 6 later.

(R.4) If we let x-l , z-0, s-0 in (3.14) and (3.16) and then

use l'Hospital's Rule to obtain the limit when :-0, we shall

obtain the following Generalized Wald's Lemma:

(3.17) I = EW + [Etnl}-Em -JE{S -Elik=m+l'-ki'

(3.18) E~c} = [E{n 1 -Et m
0}]E t

l .

4



4. Regenerative results for the stat itnarv behaviour.

For the queueing system studied in this Paper, it has been

proved that, unless s =I t1 = constant < D, each of the orc esses

wkk>mO}, "Lk k>m 0 and v(t),t.0- has a unique stationary

distribution which is independent of the initial conditions

(See [7]). In this section, we shall show that the study of the

stationary behaviour of the system can also be reduced to the

study of the lost service times within one busy cycle alone; that

is, the expressions for W (z) (!zl<o), L (z) (Re(z)O) and

Vj(z) (jz<9) can be obtained from L0 ,0 (l,0,z). Here, we shall

use a general theorem in the literature stating that the stationary

distribution of a regenerative process, if it exists, is the

'time average' or 'customer average' of the process over a regene-

rative cycle. (See [ 5])

This allows us to state the following theorem without proof:

THEOREM 5:

(4.1) W.(z) = W0, 0 (l,O,z)/E{n2 } for zl<-

(4.2) L (z) L 0 0 (l,O,z)/E{n2 } for Re(z)0O

Together with (3.16), (2.2)., the assertion for W (z) and L (z)

is now true. The next theorem will allow us to find the distribution

function of the stationary virtual waiting time in terms of the

distrioution functions of the stationary actual waiting time and

the stationary lost service time.

L -- __ _
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THEOREM 6: For z <x

(4.3) V(z) = - E 2l-2(zVW (z)/zE"t1:

+ exp(-zD)[L,(z)-l]/zE't "

PROOF: This is because V (z) = V0 0 (l,0,zO)/E~c2 } Upon

applying l'Hospital rule to (3.13), we prove the theorem. 0

Remarks:

(R.5) When D--, then (4.3) becomes a well-known result due to
/

Takacs [2Q] for the classical GI/G/l queue.

LA&
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The scchastic laws for the busy cycles.

Let

'D.34) = the set of all those functions of z which are analytic

in the domain Re(z)>O and continuous, free from zeros,

uniformly bounded in Re(z'>O;

(D.3)N = the set of all those functions of z which are analytic

in the domain Re(z)<O and continuous, free from zeros,

uniformly bounded in Re(z)O;

(D.3G) R= the set of all those functions O(z) which are defined

for Re(z)=O on the complex plane and can be represented

in the form

(5.1) D (z) - E{ exp (-zn,) ,

where _ is a complex (or real) random variable with

E{iDl<- and -n is a real random variable.

Let us define the following transformations on Rz:

(D.37) Tz{Z(z) = E(;exp(-z+)}

(D.38) T*{ z)} (z) - Tz{¢(z)} ;

z z"(~

(D.39) U-i (z) _ E {j (n_ 0) exp (-z )}

(D.40) U*{6CZ)} = (Z - O ((z) E (<O) exm(-z-)}

(D.41) VzO(z)} = E ( (n> 0) exp (-zn) }

(D.42) Vz{ (z)} = (z) - V { (z) = E{-i( 0)exp(z' ) }

where -i+ max(O,n) and 6(A) is the indicator function of any

event A; that is, S(A)=- if A occurs and 6(A)=o if A does not occur.



Clearly, T z ) (z - an !" c

T* 2Iz' U*{ (z)} and V*-:(z) belong to . .-Ac,
a T' "

is easy to show that

(5.2) Uz (z)' Tz{ (z)1 + U _ Tz (z)

(5.3) u(z )} = T}( - z (z) •

z

(5.4) =T 1(zm

( .) Vz  .( ) = Tz( (z) } + limz-0-0 Tz{ (z)}

(5.6) Tzf((z)} = Oz{ (z)1} + limz-. 0  U*f{ (z)

(5.7) Tz(Z) } = Vz( (z)} + lim 0 V*f(z))

This means that the closed form expressions for these

transformations can be obtained if that for Tz;{(z)} is known.

The following lerna, which is due to Takacs [22 1, will

enable us to obtain T,{(z)} explicitly:

LEMMA 3: If D(z)eRz , then for Re(z)>O, we have

z ({'(s)
(5.8) Tz €(z)} = (0) + lim£*0 2zi jS(Z-) d s

L

where the path of integration L£ (c>O) consists of the imaginary

axis from z=-i- to z=-iz and again from z~-4 to z=i-.

PROOF: See Theorem 2 in [22 2.2

In this paper, we have shown in Sections 3 and 4 that both

the transient and stationary behaviours of the system can be studied

in term of the lost service times within one busy cycle alone.

=- - ,.-



-_i rc., anal-ti= methcds are aiven r fi-d'-: t-e

_ntera-. a w.:... ehecre-_cal' a'-ow .s -o ozta-n

res.u,:s for the lost service times within a bus-' cvcle ,x,,Z'

and :-e sto:hastic laws of the busy cvcle C (x,-,-z) simultaneousl.
- - m, w

These equations will be expressed in terms of tne transformations

defined in (D. 37)-(D.42) •

Basically, this method simply involves the re-arrangement of

(3.16) into identities whose left hand sides belong to M and

right hand sides belong to z . By Liouville's Theorem, they are

functions independent of z. The integral equations will be obvious

when these functions are known.

First, for the sake of simplicity, let us write

(D.43) Qmw(X,%,z) = Lmw (x,.,z) - L m (X, ,)

for 0<Ix!<l, Re()>O, Re(z)>0, m>,0, w>O.

From (3.16), we have

^ ^ [m+l~x
(5.9) L (X, , 0) = W (x, ,OY = (x -xC ,(XO)]/(l-x4(I )1M'w m 'w M'w

This means that L (x, ,z) will be known if Q (x, ,z) andin,w M'w
C m Cw(x,,-z) are known.

For 0<Ix<.l, 0<Re(z)4Re( ), we now assert that

(l-Y(z)i(,-z)] can he factorized into the form
+

(5.10) (l-x=(z)QU -z) = g ,(x,,z)/g (Xiz)

where g+(x, ,z)& Mz and g-(x,Z,z) Q Nz .

Such factorization always exists as we can write

(5.11) g- (x,&,z) - exp{T {ln(l-x (z)I,(--z))}}

(512 g(XE,) - e -T(l~ - -Yz~n--



az (x, :,z) and g "x, E,,z' a-re de d~n.

fuc:o x and ~.For i~we also n-a,.e 1-xz:.(:-z):

n xz~ ~~jz) were X7z M and x, z

then by~ 1icuville's Theorem g (x,7,,z)/h (x,:,z) =g(x,-,z),/h (x:z

= , If 7 -'z) or -(z) is a rational fun~ction of z, then the

more useful expressions of c (x,fz) and a (x, ,z) h-ave been

obtained in -21- (equations 43, 44, 50 and 51).

(3.16 ) can now be re-arranged as

(5.13) g (,"zw Xrz - x g(,:,Zep-w"m , w

+ Xz{g (x,1;,z)expC-zDV '(-z)Q. :("iz)}

x M *{g (x,1r,z)exP(-zw)}

g T{ (x,--,z)expC-zD) 2(:-z)Q~(,,)

- X14 (X,r,,z)CM (X,r-Z)

for 0<jxIUl, Re(E) Re(z) 0O, MZO, w2 0. As the left hand side of

this equation belongs to Mzand its right hand side belongs to

NZ , applications of Liouville's Theorem and analytic continuation

yields

(5.1) g(x,E,Z)W (x,E,z) - x M+ {(x, z)ex(-zw)1

+ XTZ{f g (x,E,z)exp(-z]D)il( -z)Qm (x,,",z)) R(x,Z)

for O<IxI.<l, Re( )~.O, Re(z),>O m ,O, w,,O; and

zz

- Xg (X, ,z)CM (X,E,-z) =Rx~

for O<1xI!5l, Re(&) 2O, Re(z) 0 , mO, w.>O.



0~ 3

W (x,',z e< (z 'z; Q (x,',Z)

xepC -.z (min (w+s _-D,O)) M n=Mn , 0 w ;EN..

we re-arrange (3.16) differently and then apply Liouville's

theorem and analytic contin'uation to obtain

Q (x,-",z) - fexp(z(D-w))'P(z)
(5.16) mn T x +~ (x,,z

g (x~r,z) g X,"Z

Cw (x,Z, -z) exp (zD) I (z)
xTZ{ g- z S(X,lr)

for O<Ixkl, Re(.r).,,O, Re(z)?,O, m> 0O, w.>. and

(5.1) W"WC(x,Z,z)exp(zD)'Y(z) -Q C X, ,Z)

g (X, ,Z)

expl(D-T)Y.z Cm'w(x, ,-z)ex(zDY1z)I
+ g +~ g (x,&,z) I - g +(X, ,Z) j=Sx~

for O<Ixj.~l, Re(r,)>O, Re(z)<.0, m>.O, W.

The expressions of R(x,1,) and S(x,Z), which are dependent

on the type of busy cycle we are interested in, will enable us

to find the expressions of QmW(x, ,z) and Cm'w (x, ,-z) as in

the following theorems:

THEOREM 7 C s (x, ,-z) and s. (x, ,z) satisfy the followingm , w '-

simultaneous inte-yral equations:

17 q W2 M___



0- (,Cz) x + xc-'
(5.19) ~r W -r-

'X,~~n rw)(

exp(z(ED-w)) (Z)' C S (x,;,-z)ex z:- Z.
4-xm1TXTZ 

M _______d_____

S +

PROOF:- we have ptLi 0!= 0 for all V,>l. Hence lin -Cs M ",-,Z=

Thus if we let z--- in (5.15), we shall obtain

(5. 23) R S (x~i x +1lirn-,. ~T*g-(X,i,Z)exp(-zw)'

z~-~ z

Upon substituating this back into (5.15), on behalf of (5.3),

we obtain (5.18). Also,we have lim 0 +(x,r,z)#0 and from (D.43),

lrn Q O = 0. Thus if we let z-0 in (5.16), remembering

that limz~ T :t(z)l = lim Z-C z), we obtain

(5.21) S(X,':) x += CMWX''O

g +(X,o)

Upon substituting this back into (5.16),

we obtain (5.19) .0



simultaneoUis integral er2,-i:t ions:

(5. 22) g- (x jz)C W =,x ) XV* (4 z ex z w-~)mw z

-Vg (x ~z )e x p(z D z ) QW (x '7)

(5.23) g (x,I ,z)Cw (x, ,-Z) =q gX -Z - I rn1 + (X,7,z)0 0

- V* g (, :,~ x (- D '(,- ) (x , z "

Q w (x,F , Z) -x + + xCw (x, 0)
(5.24) m ,w m ,w

g + (x ~Z) g+(x, ,0)

m+ fexp(z(D-w))T'cz) fCww(X , ,-Z)Cxp(ZD)V(z)1
+ x Tz g~ +x~z - XT Z - +{~.<Z

PROOF: we have ptw w 01 0 for 0rn0 <k.<n 1  Hence

lim W (X, ,Z) = X6 where 5 is the Kronecker delta.

Thus, for m>0, w>O, letting z--~ in (5.14), we obtain

(5.25) RW (x,j) = x~ izOT g-x ~~x(z~

Upon substituting this back into (5.15), on behalf of (5.5), we

obtain (5.22). when m 0 =0 and w 0 0, we first modify (5.14) to have

the term [WoXr&1 Z)-] included. (5.23) can now be derived by the same

metnod as that for (5.22). For (5.24), the proof is similar to

that for (5.19).0



IR. ) Wh-en 5~ 1.3) tecomes

(5.20) C~ xxjZ M *,(x,,z)exp"-zw)', a "X,:,z)rn w Z

whizh is equation (198) in (124]. (3.16) now can be wri,:ten as

M+l - .(5 .27) W5  (X, ,Z) = x jj 2 .a (X,iZ "ext (-Zw>&(X Z)m , w

This equation, together with (3-1), (3.2), (3.6), (5.26) yields

(5.28) W (X,':,z) = x mr 2T{g (x,j,,z)exp(-zw)}-/g~l(x,:,z),

a well-kno.-n result due to Pollaczek (141 , Kingmnan [10] and Takacs



6. The strong M.3/ ue'.e.

:n -.his section, -we shall- concentrame :.n :he z'4e'.;e;.n system~

iwhich zhe arrival nrocess is a Poisscr. =rzcess; t: at is,

.-I~~l-x(-t for t O. We shall ob~ta4i ex=14zit express-cn

__r c~~ ' ., z The argument is based on the property~ that
M, A.

in this system, the idle periods are exponential. disributed and

4ndependent of the busy periods.

THEOREM 9:

(a) For Q<,x!,l, Re(-) O, Re(z),<O, mnO, -wO,

(6.1 Cs (xs-z p (xIrO)/(--i-z)
M ~w mw

(b) For O<cx,,l, -Re(-.)>O, -,2.O, w>,O,

(6.2) P s (x,17,0)

M+1 - w M+1 ~ 1 -ex(S-)~s~
X e '() + ~ e g (x, 14 - 0

1 1+~Xx exp2.JL E\4-s-~x'()

I~~~~ 6D +xe~(,,)- x s)~sd

2(4)(X*C- Xx) -' 2ri L E-~s X~sxis)

where

(D.44) 3 S(,~ is the root of the equation

(6.3) X+ -z-xx?'(Z) = 0

in the domain Re(z)>,0 and

(6.4) g (X, ,Z) =(x+ -z-xx~'(z)j/[9-z]



-24-

PROOF: If: P.t 1 <t: = 1-exp(-t--) or t,-O1, then Ifor all vl

i vis inde-cendent of both p and n and E'e~xP(-zi,)" = .(,z

for Re(z)>,O. Thus we obtain (6.1). (3.16) can now be written as

(6.5) Wmw(,~z

(XP+ ,-z)expC-zw) - \xP M5  (x,;-,O) - \xexp(-zD) Q M'(X, ,z)

'+;--;kx ? (Z)

for O<Ixl,<1, Re(,)>,O, Re(z)>-O, m>,O, w>O. Now, since W s (X,,z)
M'w

is analytic in the domain Re(z)>.0, letting z=e as defined in (D.44)

yields

(6.6) m S (X,'jO) = x +1e- Dw'(e) - e- Q3^ CX, ,S)

for O<jxjl, Re(l)>Q, m3AO, w)>O. Also, from (5.19), we can write

(67) m'w m+1') x + Tz pg+(D-w)vz
(67 +

+ g + (X Z (+ - ) j
for O<IxI,<l, ReC ).)O, Re(z)>.O, M>,O, w.>,. As g +(x, ,z) takes the

form of (6.4), we let z-).e in (6.7) and then eliminate Q S (x, ,6)M'W

from the resulting equation and (6.6) to prove (6.2) .

Remark:

(R.6) When D-- (6.2) and (6.6) will become

a well-known result for the residual busy period of the M/G/l queue

(6.8) P S (xIO) =xm+leewy(e) (O<Ixi.<l, Re( )>,O, m)O, woo).m~w
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